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Skyrmions on an elastic cylinder
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Abstract. For a spin-polarized electron gas on an elastic cylinder in an external axial magnetic field and
an axial electric field we find that the corresponding Euler-Lagrange equation is the double sine-Gordon
(DSG) equation with an exact 2π-skyrmion solution. The DSG skyrmion is stabilized, without Coulomb
repulsion, by the curvature of the cylinder. It adopts a characteristic length ξ which is smaller than the
radius of the cylinder. For an elastic cylinder this mismatch of length scales causes a deformation of the
cylinder in the region of the skyrmion.

PACS. 75.10.Hk Classical spin models – 75.80.+q Magnetomechanical and magnetoelectric effects,
magnetostriction – 75.60.Ch Domain walls and domain structure – 11.10.Lm Nonlinear or nonlocal theories
and models

There are many mesoscopic physical systems that ex-
emplify an interplay between geometry and nonlinearity.
A spin-polarized electron gas on a mesoscopic cylinder
is an important representative of such a system. From
this perspective we note that a planar two dimensional
electron system (2DES) in a strong magnetic field B
behaves like a (quantum Hall) ferromagnet [1]. Typical
low energy topological excitations in this system are spe-
cific spin textures known as skyrmions [2]. In order to
stabilize skyrmions in 2D one must consider electron-
electron (Coulomb) repulsion. The competition between
the Zeeman and Coulomb energies leads to a finite char-
acteristic length of the skyrmions in a flat 2DES. Our goal
is to study a 2DES on a curved surface, specifically a cylin-
der, because the underlying geometry (i.e. the cylinder)
naturally provides a characteristic length scale ρ0, the ra-
dius of the cylinder, which may stabilize the skyrmions
without the Coulomb repulsion.

We consider the (field theoretic) Hamiltonian of
Sondhi et al. [1] and look for stable ground state con-
figurations of the order parameter (n̂, n̂2 = 1). Next, we
consider the 2DES on a cylinder with an applied axial
magnetic field B. Furthermore, we are interested only in
solutions with cylindrical symmetry. If we introduce cylin-
drical coordinates (ρ, φ, z) and if we restrict the order
parameter to lie on the surface of a unit sphere

n = (sin θ cosΦ, sin θ sin Φ, cos θ)

a e-mail: rossen.dandoloff@ptm.u-cergy.fr

then we are interested in solutions with Φ = φ and θ =
θ(z) [3,4]. The Hamiltonian now reads:

H = 2πρ0

∫ ∞

−∞
dz[α′

(
θ2

z +
sin2 θ

ρ2
0

)
+ B0(1− cos θ)], (1)

where B0 = gµBσ, σ is the average electronic density, µ
is the magnetic moment and g denotes the g factor of the
electrons in the magnetic material of the cylinder. Here α′
is the spin stiffness modified by the Coulomb repulsion.

In principle, the Coulomb repulsion energy should also
be included:

Hcoulomb =
(2πρ0)2

2

∫ ∫ ∞

−∞
dzdz′V (z−z′)q(z)q(z′)], (2)

where q(z) = (sin θ/ρ)(dθ/dz) is the Pontryagin (or topo-
logical charge) density and V (z − z′) is the modified (i.e.
screened) Coulomb potential between the electronic den-
sities q(z). This interaction is not required to stabilize the
skyrmions here unlike in the 2D flat case, where it in-
troduces a characteristic length scale. The skyrmions on
a cylinder are stabilized by adopting their characteristic
length from the curvature of the cylinder [3,4]. In the
present case the Coulomb interaction would merely mod-
ify this characteristic length, which may be effectively ac-
counted for by modifying the spin stiffness (akin to the
one dimensional spin-phonon coupled systems). This will
become apparent below and hence forth we will neglect
the Coulomb interaction in our discussion.

If in addition, we apply an external axial electrical
field E, the Hamiltonian density in equation (1) will be
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Fig. 1. Cylindrically symmetric 0 → 2π 2-skyrmion on an
infinite cylinder in the presence of both an axial electric and
an axial magnetic field.

modified by adding a term q(z)E. We are now left with
the Hamiltonian density h:

h = α′
(

θ2
z +

sin2 θ

ρ2
0

)
+ gµBσ(1− cos θ) + q(z)E. (3)

We look for spin textures that minimize this Hamiltonian.
Notice that the term

q(z)E =
sin θ

ρ0

dθ

dz
E = − d

dz

(
E

ρ0
cos θ

)
(4)

is a total derivative with respect to z and as a consequence
it does not contribute to the Euler-Lagrange (EL) equa-
tion. In other words, the electric field does not affect the
charge density q(z) in this geometry. This leaves us with
the following EL equation:

2θzz =
1
ρ2
0

sin 2θ +
1

ρ2
B

sin θ. (5)

Here ρB =
√

α′/gµBσ is a magnetic length.
The EL equation, equation (5), is the well-known dou-

ble sine-Gordon (DSG) equation [5]. For the cylindrical
configuration with axial electric and magnetic fields it has
an exact solution for a single 2-skyrmion (i.e., Pontryagin
index two [6]), see Figure 1,

θ(z) = 2 tan−1

(
ρB

ξ sinh z
ξ

)
, ξ =

ρ0ρB

(ρ2
0 + ρ2

B)1/2
, (6)

where ξ is the characteristic length of the 2π-skyrmion.
Equivalently, ξ =

√
ρ0ρB

√
ρ0ρB/(ρ2

0 + ρ2
B).

This 2π-skyrmion has a finite energy because at both
+∞ and −∞ the spins are parallel to the external mag-
netic field B (Fig. 1). The highest contribution to the mag-
netic energy density, due to the interaction between the
spins and the external magnetic field comes from the sec-
tor between the centers of the two skyrmions: there the
spins are opposite to the external magnetic field. There-
fore the whole 2π-skyrmion would like to collapse and
eliminate the region where the spins are opposite to the
magnetic field. However, the collapse of the 2π-skyrmion
would leave a π-skyrmion with infinite energy, because
e.g. at +∞ the spins will be oriented against the external
magnetic field. This means that there is de facto hard-core
repulsion between the two π-skyrmions in the system by
virtue of the curvature of the cylinder; for more details
see [9]. (Therefore it is unnecessary to introduce an addi-
tional hard-core repulsion term, as this is done in the case
of a plane 2D problem [1].)

The skyrmion chooses a characteristic length which is
smaller than the geometric mean of the cylinder radius
and the magnetic length (see Eq. (6)). With increasing
magnetic field the characteristic length of the skyrmion
decreases. The energy of the 2-skyrmion

Es = 16πJ

{(
1 +

ρ2
0

ρ2
B

)1/2

+
ρ2
0

ρ2
B

sinh−1 ρB

ρ0

}
(7)

is larger than 16πJ (the mimimum energy for the homo-
topy class [2,7] with winding number Q = 2). The addi-
tional energy cost is due to the repulsive interaction be-
tween the two skyrmions in a 2-skyrmion. Only in the limit
ρB → ∞ (B → 0) we get Es → 16πJ and ξ → ρ0. In ad-
dition, there is a 2-skyrmion lattice solution for ρ0 ≥ ρB:

tan
θL(z)

2
= ±ρB

ξL

cn
(

z−z0
ξL

, k
)

sn
(

x−x0
ξL

, k
) , (8)

with periodicity d = 4KξL, where sn(z, k), cn(z, k) are
Jacobi elliptic functions and K(k) is the complete elliptic
integral of the first kind [8]. Here

ξ2
L =

ρ2
B

tan2 θ1
2 + tan2 θ2

2

, k2 =
tan2 θ2

2

tan2 θ1
2 + tan2 θ2

2

, (9)

and tan2 θ1
2 and tan2 θ2

2 are the two non-zero roots of:(
1− ρ2

BV0

2

)
tan4 θ

2
+ ρ2

B

(
1
ξ2
− V0

)
tan2 θ

2
− ρ2

BV0

2
= 0,

(10)
with 0 ≤ V0 < 2/ρ2

B. Here V0 = 0 and V0 = 2/ρ2
B cor-

respond to k = 1 (single 2-skyrmion case) and k = 0,
respectively. The energy of the 2-skyrmion lattice is given
in reference [9].

The spins in the center of the 2-skyrmion are op-
posed to the direction of the magnetic field. Therefore,
the Zeeman energy (n·B) tries to bring the two parts of
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the 2-skyrmion together in order to reduce the area on the
cylinder between the two parts. The Coulomb term that
we neglected would oppose the collapse of the 2-skyrmion
but the main stabilizing effect on the size of the skyrmion
is due to the geometric support: the cylinder itself.

The main conclusion is that the skyrmions on a cylin-
der are stabilized by the interplay of the Zeeman energy
via the magnetic length and the geometric length ρ0 of
the cylinder.

Let us now consider an elastic cylinder, that is, we re-
lax the constraint that the radius of the cylinder is fixed
at ρ0. Instead we now have ρ = ρ(z). Solutions given in
reference [9] apply here and we find that the cylinder de-
forms in the region of the 2-skyrmion. There are further
consequences of this effect. The shrunk area of the cylin-
der may create localized electronic states [10] and this will
localize the skyrmions.

There are other interesting possibilities. A smaller
radius means higher Landau level energy εn ∼ (1/ρ2)
which implies that electrons would leave this area and
the central ring would become positively charged cre-
ating an axial dipole (For time-dependent solutions, an
oscillating dipole emits radiation–the cylinder will act
like a nano-antenna!). For a skyrmion lattice solution,
equation (8), this will lead to alternating +ve and −ve
radial charge stripes. Instead of the magnetoelastic
coupling, we can also envision a shrinking of the cylinder
arising from electron-phonon interaction. The skyrmion
should have characteristic signatures in the photolumi-
nescence spectra (different from their photoluminescence
spectra of a flat 2DES [11]). Similarly, the deformation
of the cylinder should have signatures in the Raman
spectra as well as in the phase shift and attenuation
of an ultrasonic pulse [12] traveling along the de-
formed cylinder. Finally, it would be interesting to study

skyrmion stabilization on other simple curved geometries
such as a sphere and a torus. The latter introduces two
geometric length scales in addition to a nontrivial genus-1
topology.

This work was supported in part by the US Department of
Energy.
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